This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2672747, IEEE
Transactions on Knowledge and Data Engineering

Personal Web Revisitation by Context and
Content Keywords with Relevance Feedback

Li Jin, Gangli Liu, Chaokun Wang and Ling Feng, Senior Member, IEEE

Abstract—Getting back to previously viewed web pages is a common yet uneasy task for users due to the large volume of personally
accessed information on the web. This paper leverages human’s natural recall process of using episodic and semantic memory cues
to facilitate recall, and presents a personal web revisitation technique called WebPagePrev through context and content keywords.
Underlying techniques for context and content memories’ acquisition, storage, decay, and utilization for page re-finding are discussed. A
relevance feedback mechanism is also involved to tailor to individual’'s memory strength and revisitation habits. Our 6-month user study
shows that: (1) Compared with the existing web revisitation tool Memento, History List Searching method, and Search Engine method,
the proposed WebPagePrev delivers the best re-finding quality in finding rate (92.10%), average F1-measure (0.4318) and average
rank error (0.3145). (2) Our dynamic management of context and content memories including decay and reinforcement strategy can
mimic users’ retrieval and recall mechanism. With relevance feedback, the finding rate of WebPagePrev increases by 9.82%, average
F1-measure increases by 47.09%, and average rank error decreases by 19.44% compared to stable memory management strategy.
Among time, location, and activity context factors in WebPagePrev, activity is the best recall cue, and context+content based re-finding

delivers the best performance, compared to context based re-finding and content based re-finding.

Index Terms—Web revisitation, access context, page content, relevance feedback

1 INTRODUCTION
1.1 Motivation

Nowadays, the web is playing a significant role in deliv-
ering information to users’ fingertips. A web page can be
localized by a fixed url, and displays the page content as
time-varying snapshot. Among the common web behav-
iors, web revisitation is to re-find the previously viewed
web pages, not only the page url, but also the page
snapshot at that access timestamp [1]. A 6-week user
study with 23 participants showed nearly 58% of web
access belonged to web revisitation [2]. Another 1-year
user study involving 114 participants revealed around
40% of queries were re-finding requests [3]. According
to [4], on average, every second page loaded was already
visited before by the same user, and the ratio of revisited
pages among all visits ranges between 20% and 72%.
Psychological studies show that humans rely on both
episodic memory and semantic memory to recall in-
formation or events from the past. Human’s episodic
memory receives and stores temporally dated episodes
or events, together with their spatial-temporal relations,
while human’s semantic memory, on the other hand,
is a structured record of facts, meanings, concepts and
skills that one has acquired from the external world. Se-
mantic information is derived from accumulated episod-
ic memory. Episodic memory can be thought of as a

e L. Jin, G. Liu and L. Feng are with the Department of Com-
puter Science and Technology, Tsinghua University, Beijing 100084,
China. E-mail: I-jin12@mails.tsinghua.edu.cn; gl-liul3@mails.thu.edu.cn;
fengling@tsinghua.edu.cn

o C. Wang is with the School of Software, Tsinghua University, Beijing
100084, China. Email: chaokun@tsinghua.edu.cn

“map” that ties together items in semantic memory. The
two memories make up the category of human user’s
declarative memory, and work together in user’s infor-
mation recollecting activities [5]. Thus, when a user’s
web revisitation behavior happens, s/he tends to utilize
episodic memory, interweaved with semantic memory,
to recall the previously focused pages. Here, semantic
memory accommodates content information of previ-
ously focused pages, and episodic memory keeps these
pages’ access context (e.g., time, location, concurrent
activities, etc.) [6], [7].

Inspired by the psychological findings, this paper ex-
plores how to leverage our natural recall process of using
episodic and semantic memory cues to facilitate personal
web revisitation. Considering the differences of users in
memorizing previous access context and page content
cues, a relevance feedback mechanism is involved to
enhance personal web revisitation performance.

1.2 Existing Solutions

In the literature, a number of techniques and tools like
bookmarks, history tools, search engines, metadata an-
notation and exploitation, and contextual recall systems
have been developed to support personal web revisi-
tation. The most closely related work of this study is
Memento system [8], which unifies context and content to
aid web revisitation. It defined the context of a web page
as other pages in the browsing session that immediately
precede or follow the current page, and then extracted
topic-phrases from these browsed pages based on the
Wikipedia topic list. In comparison, the context infor-
mation considered in this work includes access time,
location and concurrent activities automatically inferred

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2672747, IEEE

Transactions on Knowledge and Data Engineering

Web Page Access g

!

Result Generation and

Web Page Re-Access

li Feedback Adjustment <—l
Context Acquisition Re-Access by
and Management g < Context Keywords
Ly ontext Tree]
Content Extraction 9 PN Re-Access by
and Management Content Keywords

Bounded with the accessed page URL

Fig. 1. The personal web revisitation framework

from user’s computer programs. Instead of extracting
content items from the full web page as done in [8],
we extract them from page segments displayed on the
screen in the user’s view, and assign a probabilistic value
to each extracted term based on user’s page browsing
behaviors (i.e., dwell time and highlighting), as well
as page’s subject headings and term frequency-inverse
document frequency (tf-idf), reflecting user’s impression
and likeliness of using the keyword as recall content
cues. Other closely related work such as [9], [10], [11]
enabled users to search for contextually related activi-
ties (e.g., time, location, concurrent activities, meetings,
music playing, interrupting phone call, or even other
files or web sites that were open at the same time), and
find a target piece of information (often not semantically
related) when that context was on. This body of research
emphasizes episodic context cues in page recall. How to
grasp possibly impressive semantic content cues from
user’s page access behaviors, and utilize them to facil-
itate recall are not discussed. To tailor to individual’s
web revisitation characteristics, as well as human user’s
context and content memory degradation nature, this
study presents methods to dynamically tune influential
parameters in building and maintaining probabilistic
context and content memories for recall.

1.3 Our Work

Fig. 1 plots our personal web revisitation framework
with relevance feedback. It consists of two main phases.

(1) Preparation for web revisitation. When a user accesses
a web page, which is of potential to be revisited later
by the user (i.e., page access time is over a threshold),
the context acquisition and management module captures
the current access context (i.e., time, location, activities
inferred from the currently running computer programs)
into a probabilistic context tree. Meanwhile, the content
extraction and management module performs the unigram-
based extraction from the displayed page segments and
obtains a list of probabilistic content terms. The probabil-
ities of acquired context instances and extracted content
terms reflect how likely the user will refer to them as
memory cues to get back to the previously focused page.

(2) Web revisitation. Later, when a user requests to
get back to a previously focused page through context

and/or content keywords, the re-access by context key-
words module and re-access by content keywords mod-
ule search the probabilistic context tree repository and
probabilistic term list repository, respectively. The result
generation and feedback adjustment module combines the
two search results and returns to the user a ranked list
of visited page URLs. The relevance feedback mechanis-
m dynamically tunes influential parameters (including
memories” decay rates, page reading time threshold,
interleaved window size threshold, weight vectors in
computing the association and impression scores), which
are critical to the construction and management of con-
text and content memories for personal web revisitation.

The main contributions of our paper thus lie in the
following three aspects:

e We present a personal web revisitation technique,
called WebPagePrev, that allows users to get back to
their previously focused pages through access context
and page content keywords. Underlying techniques for
context and content memories” acquisition, storage, and
utilization for web page recall are discussed.

e Dynamic tuning strategies to tailor to individual’s
memorization strength and recall habits based on rele-
vance feedback (e.g., weight preference calculation, de-
cay rate adjustment, etc.) are developed for performance
improvement.

e We evaluate the effectiveness of the proposed tech-
nique WebPagePrev, and report the findings (e.g., the im-
portance of context and content factors) in web revisita-
tion through a 6-month user study with 21 participants.

The rest of the paper is organized as follows. In Section
2, we review closely related work. Then we address the
acquisition and management of user’s previous access
context and content-related information in Section 3,
and describe our personal web revisitation approach in
Section 4. A relevance feedback mechanism is detailed in
Section 5. We evaluate the performance from a 6-month
user study in Section 6, and discuss further issues in
Section 7. Finally, Section 8 concludes the paper.

2 RELATED WORK

To support personal web revisitation, a number of tech-
niques and tools are developed, including bookmarks,
history tools, search engines, metadata annotation and
exploitation, and contextual recall systems.

Bookmarks. Apart from back/ forward buttons, man-
ually/automatically bookmarking favorite web pages in
web browsers enables users to get back to the previously
accessed pages. According to user’s every visited web
page and browsing preferences, [12], [13] built book-
marks automatically and organized them into a recency
list [12] or layered structure [13], respectively. Gamez et
al. [14] further used classifiers to forecast a few of the
bookmarks that are more probably to be visited later
and showed them in the browser bookmarks personal
toolbar, so that the user can access the desired web
page through a single mouse click. Bearing similarities

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2672747, IEEE

Transactions on Knowledge and Data Engineering

to [12] and [14], Kawase et al. [15] recommended vis-
ited pages relevant to the currently viewed pages, and
presented them in a dynamic browser toolbar. Besides,
the SearchBar tool [16] allowed users to organize their
historic search keywords and click pages under different
topics. Users can make notes on the topics for easy
navigation. With the Landmark tool [17], users can also
mark a specific part of the page.

History Tools. History tools of web browsers maintain
user’s accessed URLs chronologically according to visit
time (e.g., today, yesterday, last week, etc.), and accessed
page titles and contents. Tauscher and Greenberg [2],
[18] analyzed 6 weeks of usage data collected from 23
participants when using a commercial browser Mosalic,
and discovered that people tend to revisit pages just vis-
ited, access only a few pages frequently, browse in very
small clusters of related pages, and generate only short
sequences of repeated URL paths, which can be used to
develop guidelines for the design of history mechanism.
Google Web History' keeps user’s search keywords and
clicked pages, and categorizes them into image, news,
ordinary page, etc. Users can navigate or search the
history by page title/content keywords. Contextual Web
History [19] improved the visual appearance of the web
browser history by combining web site thumbnails and
content snippets to assist users to easily browse or search
their histories by time. Visual History Tool [20] encoded
four features of a visited web page, which consists
of user’s page interests measured by dwell time, the
frequency and recency of the visit, and navigational asso-
ciations between pages. List- and graph-based forms are
then adopted to provide navigation histories. xMem [21]
improved history mechanisms by intermixing semantic
aspects with the temporal dimension of the accessed
pages. It organized the pages into groups and presented
a navigational history instead of simply exploiting time-
sort history. SearchPanel [22] combined web page and
process metadata into an interactive representation of the
retrieved documents that can be used for sense-making,
navigation, and re-finding documents.

Search Engines. Tyler and Teevan [23] studied how
search engines are used for re-finding previously found
search results. It explored the differences between
queries that had substantial/minimal changes between
the previous query and the revisit query. Through ob-
serving the differences between re-finding behavior oc-
curring within the same session and across multiple
sessions, the results showed that cross-session re-finding
may be a way to bridge a task between two different
sessions. Re:Search [24] supported simultaneous finding
and re-finding on the web. Past queries were indexed
to identify repeated searches, and the most recently
viewed results were stored in a result cache. When a
user’s query was similar to a previous query, Re:Search
obtained the current results from an existing search
engine, and fetched relevant previously viewed results

1. http:/ /www.google.com /history

from its cache. The newly available results were then
merged with the previously viewed results to create a
list that supported intuitive re-finding and contained
new information. Adar et al. [25] analyzed 5-week web
interaction logs from over 612,000 users, and interview
studies from 20 participants who installed software to
log web page visits for one to two months. They i-
dentified twelve different types of revisitation curves
corresponding to four groups (i.e., fast, medium, slow,
and hybrid revisits), and regarded each of them as a
signature of user behavior in accessing a given web page.
The analysis of revisitation behaviors for web users in
various contexts could empower search engines to better
support fast, fresh, and effective finding and re-finding.

Metadata Annotation and Exploitation. Haystack [26]
stored arbitrary objects of interest to a user, and recorded
arbitrary (predefined or user-defined) properties of and
relationships between the stored information. It coined
a uniform resource identifier (URI) to name anything
of interest, including a document, a person, a task, a
command/menu operation, or an idea. Once named, the
object can be annotated, related to other objects, viewed,
and retrieved through arbitrary properties, which served
as useful query arguments, as facets for metadata-based
browsing, or as relational links to support the associative
web browsing. Bearing the similarity to Haystack, a SQL-
based MyLifeBits platform [27] was built for recording,
storing, and accessing a personal lifetime archive. It
stored content and metadata for a variety of item types,
including contacts, documents, email, events, photos,
music and video, which were linked together implicitly
using “time”, or explicitly linked with typed links such as
a “person in photo” link between a contact and a photo,
or a “comment” link between a voice comment and a
document. With linking, the traditional folder (directory)
tree was replaced by a more general “collections” function
using a directed acyclic graph (DAG).

Leveraging Access Context and Page Content. Stuff
I've Seen [28] built a unified index of information that a
person has seen on the computer, including emails, web
pages, documents, media files, calendar appointments,
etc., and allowed the use of such contextual cues as time,
author, thumbnails and previews to search for informa-
tion. Deng et al. [10] allowed users to re-find web pages
and local files through previous access context, including
time, location, and concurrent activities. It clustered and
organized context instances in a context memory, and
dynamically degraded the context instances to mimic
user’s memory decay feature. A query-by-context model
for information recall was presented upon the context
memory. YouPivot [9] leveraged human user’s natural
method of recall by allowing a user to search through
their digital history (e.g., files, URLs, physical location,
meetings and events) for the context they do remember.
The user can then Pivot, or see everything that was
going on while that context was active. Further, YouPivot
displayed a visualization of the user’s activity, providing
another method for finding context. Memento [8] provid-

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2672747, IEEE

Transactions on Knowledge and Data Engineering

ed users with descriptive topic-phrases extracted from
access context and page content to aid web revisitation.
Browsed pages which followed and preceded the ac-
cessed web page constitute the page’s access context.

3 PREPARATION FOR WEB REVISITATION

This section describes the acquisition and management
of user’s previous access context and content-related
information to prepare for user’s web revisitation.

3.1 Context Acquisition and Management Module
3.1.1 Context Acquisition

Three kinds of user’s access context, i.e., access time,
access location, and concurrent activities, are captured.
While access time is determinate, access location can
be derived from the IP address of user’s computing
device. By calling the public IP localization API, we can
map the IP address (e.g., “166.111.71.131”) to a region
(e.g., "Beijing, Tsinghua University”). In order to get a
high-precision location, we further build an IP region
geocoding database, which could translate a static IP
address to a concrete place like “Lab Building, Room
216”. If the user’s GPS information is available, a public
GPS localization application could also help localize the
user to a Point of Interest (POI) in the region. User’s
concurrent activities are inferred from his/her computer
programs, running before and after the page access. We
continuously monitor the change of user’s focused pro-
gram windows, which can be either a web page, a word
file, or a chatting program window, etc., during user’s
interaction with the computer. Once a user visits a web
page longer than a threshold 7., computer programs that
run interleaving with the current web access program
for over 7, time are taken as the associated computer
programs (i.e., context activities).

Let c[ts, t.] = (c.title, c.dur, c.freq) denote a computer
program within the time window [t,,t.], where c.title
is a set of words after removing stop words and non-
WordNet words from the title of the computer program,
c.dur is the total running time of the program within
the time window [ts,t.], and c. freq is the total focus fre-
quency within [ts, t.]. There are two ways to have a focus
program. One is done by the user to manually switch to
the program window, and others are the automatically
running programs like audio/video players.

Definition 1: Assume a web page access program
wlws, we] = (w.title, w.dur, w. freq) accesses a web page
at time w, leaves the page at time w,, and the total visit
time of the page (i.e., the total focus duration time of
program w) is longer than 7.. Computer program c is
called an associated computer program (context activ-
ity) within the w’s interleaving window [ws-A, we+A4],
denoted as clws-A, we+A] = (c.title, c.dur, c. freq), if and
only if (c.dur > 7).

Parameters 7. and A are subject to individual’s mem-
orization and recall characteristics, and will be dynami-
cally tuned based on user’s relevance feedback. Initially,
7. = 90 seconds, A = 600 seconds. O

For each associated computer program (context activ-
ity) ¢ of a web page w, we bind an association score
cAs(w, ¢) to express how likely the user will use it as a
memory cue to re-access the web page later. Intuitively,
a program with a longer focus duration and more focus
frequency leaves the user a deeper impression than
the one with a shorter focus duration and less focus
frequency. Similarity/contrast and temporal contiguity
also strengthen the association of the program with the
web access according to the laws of association during
human memory’s recollection [29]. Hence, we compute
the association score of access context based on the
following four features:

1) ¢’s total focus duration c.dur.

2) ¢’s total focus frequency c. freq.

3) ¢’s temporal distance from a web page w, D(c,w),
which is defined as the minimal distance between ¢’s
focus time period and w’s start/end period [ws,w.].
Assume a computer program c is focused within
[s1,€1],- -+, [Skser] C [ws-A, we+A], respectively. D(c, w)

= arg mini <<k dist([s;, €;], [ws, we]), where

0 if [si, e;] overlaps [ws, we]
ws —e; if [ss, e;] precedes [ws, we]
s;i —we if [si, €;] succeeds [ws, we]

dist([si, €3], [ws, we]) =

P FS B . _ |w.titlenc.title|
4) c and w’s title similarity, Sim(c,w) = =57

[0,1], where w.title and c.title are a set of title words
after removing stop words and words not in WordNet.

Definition 2: Let C be the set of associated computer
programs for the web page access program wlws, w| =
(w.title, w.dur,w.freq). Given an associated comput-
er program ¢ € C of w, where clws-A, we+A] =
(c.title, c.dur, c. freq), the association score of ¢ with w
is defined as: cAs(w, ¢)=a1 Dy, (w, ¢)+ao Freq(w, c)+asz(1-
Disi(w, ¢))+aySim(w, c), where 1) Dy, (w, c) = —Sdur

w.dur+2A;
2) Freg(w,c) = ——<1Ired K 3) Dist(w, c) = W§

> ceclefreq
4) Sim(w, c) = Lw-titlenie.title|, ;4 5) Z?:l a; = 1. Initially,

Jw.title]
a; (for : =1,2,3,4) is set to i, and will be dynamically
tuned based on user’s relevance feedback. O

Example 3.1: Fig. 2 illustrates three associated comput-
er programs ci, ¢z, c¢s of the web page w, which are visual
studio program, adobe reader program, and music player
program, respectively, where w.title = “How to: Retarget
a project using DTE”, and w.dur = 265s. ¢, .title = "(visual
studio) DTE Command”, c,.dur = 417+146 = 563s, and
c1.freq = 2. Thus, Dy, (w,c1) = 563/(265 4+ 2 * 600) =~
0.38, Freq(w,c1) =2/4=0.5, D;s(w, c1) = 114/600 = 0.19,
Sim(w,c1) = 1/3 ~ 0.33. Thus, cAs(w,c) = (0.38+0.5+(1-
0.19)+0.33)/4 ~ 0.51. O

3.1.2 Construction of Probabilistic Context Trees

Access context (i.e., time, location, and concurrent com-
puter programming activities) is organized in a prob-
abilistic context tree to support generalized revisit
queries due to human user’s cognitive understanding
and progressive decay during learning and recalling

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2672747, IEEE

Transactions on Knowledge and Data Engineering

w.title=""How to: Retarget a project
using DTE", w.dur=265s
Ws-A Wy We
[_
| |
I |

d

|

| |

| |

| |

———

o0 Lo ——d
cr.dur=(417+146)s, c,.freq=2, D(c,, w)=y1m((14s, 480s) |
[I
[I — I
@ c2.dur=1032s, ca.freq=1, D(c;, w)=0 I' : I
(DAY s— I
I

A

cs.dur=251s, cs.freq=I1, D(c3 w)=71s

Adobe

Fig. 2. Three associated computer programs of the web
page access program w

1 Access Context

= ——— T — — e — — — — — ——— — —

Time) | \
10 10 H 0.85 I
G I I I
| 1l [Leveled
| . | . I . decay rate:
I 1.0+ } " 0. : : 0.71 0.49 :
I
L1 } Spring |1 Tsinghua ‘ Busy ‘ ‘ Relaxed % ——— ==
| 1 University || |
| | |
10 10 o . 0.49 I
LL.Ll ‘ Mid April ‘ | :‘ Lab Building “ I‘ Programming H Reading/Writing ‘ Listening to Music H— — 2
| | |
)L

cAs(w,c)#0.51 cAs(w,c;)x0.41 cAs(w,c,)50.49

(visual studio) (pdf) Video retargeting: A
DTE Coﬁmand visual-friendly dynamic

programming approach

Morning,
2014-4-17

(kuwo) Adele,

Room 216 Hometown Glory

LL.LL1

Fig. 3. Probabilistic context tree of the web page access
program w

processes [30]. Each leaf node is bounded with a score
in [0,1], stating the likelihood that this context node is
used as a contextual cue. In the activity subtree, leaf
nodes’ scores are the association scores defined in Def. 2.
As time and location are deterministic, leaf nodes in
the time and location subtrees are set to 1.0. With the
scores of all the independent leaf nodes available, we can
compute the scores of their parent nodes through Jordan
formula [31], which is defined as the union of n random
events based on the inclusion-exclusion principle. Let
{childy, childs, ..., child,} be a set of child nodes of the
same parent node parent, the score after union operation
is calculated as follows:

cAs(w, parent)= (—1)2 - 31 | cAs(w, child;)+

(=1)3- Pi<icj<n CAs(w,child;) - cAs(w, child;)+

(71)4'21§i<j<k:§n cAs(w, child;)-cAs(w, childy)-cAs(w, childy)+
< (=)L cAs(w, childy) - cAs(w, childs) - . . . - cAs(w, childy,)

In this way, we can assign scores to all the nodes in the
context tree. Fig. 3 gives a leveled probabilistic context
tree example for w, whose activity leaf nodes correspond
to context activities cy, c3,co in Fig. 2. Busy as a context
node is a general activity status to describe whether
the associated computer programs are concerning about
working or learning. On the contrary, relaxed describes
the status of entertainment and leisure. We apply the
Dewey encoding scheme to probabilistic context trees
based on [32], [33], [34]. Dewey code is a widely used

coding scheme for tree structure, where each node is
assigned a Dewey number to represent the path from the
root to the node. Each component of the path represents
the local order of an ancestor node. For example, a
tree node n encoded as nj.ny...n; is a descendant
of tree node m encoded as mj.mgy...mys iff k>f and
ni.Ng...ny = mi.my...my. In our probabilistic context
trees, the Dewey number of the root is actually the tree
id. For each node in a probabilistic context tree, we build
a Trie-based index according to its keywords.

The time complexity of building context trees is O(n. -
h+nc-h-|c|), where n. is the number of captured context
instances, |c| is the average instance length, and 4 is the
height of context tree.

3.1.3 Decay and Reinforcement of Probabilistic Context
Trees

The obtained probabilistic context trees will evolve dy-
namically in life cycles to reflect the gradual degradation
of human’s episodic memorization as well as the context
keywords that users will use for recall. That is, for
each node in the probabilistic context tree, its association
score will progressively decay with time. Psychological
study [35] showed that the memorization status of a
value v can be expressed as a function of the exponential
in the square root of elapsing time (also called age), that
is, v(t) = v(to)-e~ Vi1, where v(ty) is the original value
of v at the start time ty, v(¢) is the degraded value of v
at time ¢ > ¢, and A is the value’s decay rate.

For different hierarchical values in the probabilistic
context tree, as specific values at lower levels usually de-
grade faster than general ones at upper levels in human’s
memory, different decay rates Ajeyer, (¢ = 1,2,3,-)
are assigned in line with the Ebbinghaus Forgetting
Curve?, a graph illustrating how we forget information
over time. It was formulated in 1885 by psychologist
Hermann Ebbinghaus, who conducted experiments on
himself to understand how long the human mind retains
information over time. Ebbinghaus took himself as a
test subject to examine his own capacity to recollect
information by creating a set of 2,300 three-letter, mean-
ingless words to memorize. He studied multiples lists
of these words and tested his recall of them at different
time intervals over a period of one year. Ebbinghaus
discovered that 58.2% was remembered after 20 minutes,
44.2% after 1 hour, 35.8% after 8-9 hours, 33.7% after 1
day, 27.8% after 2 days, and 25.4% after 6 days. Fitting
formula v(t) = v(ty) - eV~ with these experimental
values, we can calculate and obtain seven different decay
rates, and the average decay rate approximates to 0.05.
Further similar memorization experiments on meaning-
ful essays and poems demonstrate similar exponential
decay patterns in the square root of elapsing time, whose
corresponding decay rates exhibit linear relationships
with that on words, i.e., Adyord : Aessay @ Apoem = 12 :6: 1.
Based on these findings, we initialize the decay rates at

2. http:/ /www.wisegeek.com /what-is-the-forgetting-curve.htm

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2672747, IEEE

Transactions on Knowledge and Data Engineering

[e e———

« = & [D blogsmsdn.com/b/visualstudio/archive/2010/02/25/how-to-retarget-a-p

How to: Retarget a project using DTE

Visual Studio Blog) 25 Feb 2010

For page w with PageID =1, 150 terms are extracted, where
term "retarget" appears 6 times, and term "project"
appears 11 times. Among the totally accessed 1000 web
pages, 10 pages contain "retarget", and 100 pages contain
"project". Considering focus time length, dy.dur =160s and
dy.dur =220s. The maximal display time length is 500s.

Trie with inverted list
at leaf nodes:

Term PagelD

dy=“retarger” 1

Wecome to the il St
NEL comerionwims &= “project” 1

Impression Score
Loy (w, dy) = 160/500 = 0.32;
Higuiign(w, di) = 0; Heaw, di) = 1

Trafw, dy) = 6/150*10g(1000/10)/0.16
=05

L., (w, d3) =220/500 = 0.44;

max(tf-idf(d,, w), tf-idf(d,, w), ...) = 0.16

Higniign(w, d2) = 15 Headw, dy) =13
Tafow, dy) = 11/150%10g(1000/100)/0.16 0.72 JL Pagefreq: 10
04 L Paseien: 0
Poings It

Postings list |

Fig. 4. Probabilistic term list extraction and management of the focused web page w

different hierarchical levels by Ajcyer, = 0.05, Ajevet, =
3712)\level2 %)\levell- Overalll
MNevelspr = m)\leveli (i = 1,2,3,---), whose values
will be dynamically adjusted according to user’s revisit
queries and relevance feedback. The association score
of access context value thus degrades as cAs(w,c,t) =
cAs(w, c, tO) . e~ Mever; Vi—to,

Apart from memory degradation, the probabilistic
context tree may also experience reinforcement due to
user’s revisit queries. That is, if user types in a context
value in the context tree, its possibly degraded associa-
tion score is reset to the original one, and all its ancestors’
scores (if degraded) are also re-computed based on this
original value. The decay starting time for its located
level is meanwhile reset to the current time.

1
ox1)\levell s)\level_g

3.2 Content Extraction and Management Module

Apart from access context, users may also get back to the
previous viewed pages through some content keywords.
Instead of extracting content terms from the full web
page, we only consider the page segments shown on
the screen. There are many term weighting schemes in
the information retrieval field. The most generic one is
to calculate term frequency-inverse document frequency
(tf-idf) [36]. For personalized web revisitation, merely
counting the occurrence of a term in the presented page
segment is not enough. Also, user’s web page browsing
behaviors (e.g. visitation time length and highlighting
or not), as well as page’s subject headings, are counted
as user’s impression and potential interest indicators for
later recall. In a similar manner as access context, we
bind an impression score to each extracted content term
d, showing how likely the user will refer to it for recall
based on the four normalized features.

Definition 3: Let d be a content term extracted from
the web page segment, shown on the screen of the access
program wlws,w,]. The impression score of d with w
is defined as: dIs(w,d)=01Len(w,d)+B2H;gniignt(w, d)+
BsHeqa(w,d) + BaTyigr(w,d), where 1) Le,(w,d) is the
ratio of the time length when the page segment contain-
ing d was displayed on the screen versus the maximal
display time length of all the viewed page segments; 2)

Hightiight(w,d) = 1 if user highlights d, and 0 otherwise;
3) Hega(w,d) = 1 if d occurs in the page title, and 0
otherwise; 4) Ty;qf(w,d) is the ratio of term d’s tf-idf
value ¢ f—idf (d, w) versus the maximal tf-idf value of all
the terms extracted from page w; 5) Zle B; = 1. Initially,
B; (for i =1,2,3,4) is set to 1, and will be dynamically
tuned based on user’s relevance feedback. O

Fig. 4 shows a few content terms extracted from the
accessed web page w, where extracted term d’s total
focus time duration d.dur is more than threshold 7; = 30
seconds. We organize all the extracted content terms, to-
gether with their initial impression scores into a Trie tree
based on the longest common prefix. For each term at
the leaf node of the Trie tree, an inverted index recording
the IDs of all the accessed web pages containing the
term is built to facilitate content-based re-search. Like
probabilistic context trees in the episodic memory, terms’
impression scores in the semantic memory will also pro-
gressively decay with time as dIs(w,d,t) = dIs(w,d, ty)
- e"MVi=to where the terms’ decay rate) is 0.05 in
this study, and get reinforced to the original impression
scores once the user utilizes them as the content cues for
web revisitation.

To gain the speed benefits of indexing at retrieval time,
we apply Trie tree to organize the extracted term lists
based on the longest common prefix. For each term at
Trie tree, inverted index is then built to store a mapping
from extracted term lists in advance as shown in Fig. 4.
Within a target page collection, we assume that each
page has a unique serial number, known as the page
identifier (PagelD). During index construction, the input
is term lists for the web pages, we insert the terms into
the Trie tree. Meanwhile instances of the same term are
grouped together, and the result is split into a dictionary
and postings as shown in the right column of Fig. 4. The
dictionary records some statistics, such as the number
of web pages that contain each term (Pagefreq), which
also corresponds to the length of each postings list. And
postings list stores a list of pairs of impression score
dIs(w,d,t) and PageID for a term d.

Here, the time complexity of building content term
lists is O(ngq - |d|), where ng4 is the number of extracted
terms, and |d| is the average term length.

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2672747, IEEE

Transactions on Knowledge and Data Engineering

4 WEB REVISITATION BY CONTEXT AND CON-
TENT KEYWORDS

Now each user’s accessed web page w is bounded with
a probabilistic context tree (denoted as w#tree) and a
probabilistic term list (denoted as w#list). Let W be the
set of user’s previously accessed web pages. A revisit
query posted by the user at time ¢ is expressed as W,,, =
QW,Q¢, Qa,t), where Q. is a set of context keywords,
Qq is a set of content keywords, and answer W,, is a
ranked list of matched web pages from W.

The computation of content ranking is straightfor-
ward, ie., dRank(w#list| Qa,t) = [],,c0, ds(w,q4,t),
which is the product of matching terms’ impres-
sion scores against content keywords ()4. A content
ranking example with respect to Qq = {’retarget”,
“project”} is illustrated in Fig. 5(a). Comparatively, as
a context keyword may appear in the titles of mul-
tiple tree nodes, the computation of context ranking
cRank(w#tree| Q.,t) is a bit complex. We firstly s-
plit a context tree into multiple satisfactory subtrees,
so that each subtree contains all the search keywords
once and only once. We then compute the ranking of
each subtree, and finally merge their ranking results by
cRank(wi#tree| Q,t)=) ., cRank(w#treesu,| Qc,t). To
calculate the ranking score of each subtree, we firstly
determine the matched node set V' = {vy,vs,---}. For
each context node v in V, we calculate the matching
score by mAs(Q.,v,t) = % - cAs(w,v,t). Con-
sidering the ancestor node v; with a matching child
node v; (v; <. v;), we calculate v; and v;’s matching
scores by mAs(Qc, {vi,v;},t) = mAs(Q.,v;(v;,t) =
cAs(Qc,vj,t). The reason is that ancestor node v; can
be derived from v; in context tree, where there exists a
dependency relationship. If user remembers the context
nodes detailed at lower level, he can directly infer the
corresponding nodes at upper level along an upward
path. Therefore, the ancestor nodes with matched child
nodes can be firstly pruned to keep the rest independent,
and cRank(wi#treegs,p| Qc, 1) is the product of the remain-
ing nodes” scores. Fig. 5(b) gives two smallest subtrees
that satisfy Q. = {"busy”, “programming”, "read”, "at
lab”}, where “at” as a stop word is removed.

In response to a user’s web revisitation request, con-
sisting of a set of context keywords (). and a set of
content keywords @), issued at time ¢, all the context
trees and term lists of user’s accessed pages W will be
examined, with pages that match @ being extracted as
the candidate matched page set W.. Then the pages with
higher matching score will be returned as query result.
We call probabilistic context tree w#tree contains Q., if
and only if for each context keyword ¢. € Q. there
exists a node c in w#tree such that ¢. € c.title, denoted
as Q. C. w#tree. Similarly, we call probabilistic term
list w#list contains ()4, if and only if for each content
keyword ¢4 € Qq, there exists a term d in w#list such
that g4 = d, denoted as Qg4 C, wilist.

(a) Content Keywords Q, = {“retarget”, “project”} (t-t,= 25 days)

“ »
retarget

PagelD: 1| Impr.Score: 0.46 ‘
’ age mpr.ocore Content Ranking:
“project” dRank(wilist| Q,,t) = 0.46x0.72 = 0.3312

’PageID:1| Impr.Score: 0.72 ‘

(b) Context Keywords Q.= {“busy”, “programming”, “read”, “at lab"}

Access Context
177 Tocation! (T T T T T T Aetivit
| 1.0 acauonl
[an |
| |
| : |
L0t |
:l Beijing ‘:
|
1
|
l
|

Satisfied Subtrees:

Access Context

g5 Adivity
[an]

0.71

Busy

0.51 0.41

|10
‘ Programming H Read/Write “ !

I'singhua

0.41

,,,,,,,,,,,,,,,,,,, L R S Y A |
cAs(w,c)0
005, LN (pdf) Video
0.51xe el 0.41xe el v c

isual-frie
programming approach

=0.4501 =0.3618 G ol
2

=0.3894

Context Ranking:

=03894 0.41 x%xe“"‘““ =0.0532
cRank(whtree,, | Q,,1)=0.3894x0.4501x0.3618=0.0634 cRank(w#ree,,, |Q,,1)=0.3894x0.0532 = 0.0207

cRank(witree|Q,,1)= Zf_l cRank(wtree, | Q,,t)=0.0634+0.0207 = 0.0841

(c) Web page ranking:
Rank(w| Q1) = dRank(w#list | Q,.,1)x cRank(w#tree| O,,1) = 0.33120.0841 = 0.0279

Fig. 5. A web page ranking example for a revisit query
containing Q. and Q4

Web page w satisfies query request @, iff Q. C.
witree and Qg Cg4 wilist. Its satisfaction rank can
be computed based on the context ranking func-
tion cRank(w#tree| Q.,t) and content ranking func-
tion dRank(w#list| Qg,t), that is, Rank(w| Q,t) =
cRank(wi#tree| Q.,t)-dRank(w#list| Qq,t). Fig. 5(c) ex-
emplifies the final ranking computation of the matched
page w for keyword-based query (Q., Qq).

The detailed procedure is illustrated in Algorithm 1.
Through scanning the inverted index, the candidate
matched page set W, can be determined based on
matched context trees and matched term lists against a
revisit query @ (line 2-4). To compute context ranking,
it firstly splits the matched context tree into multiple
satisfactory subtrees, then traverses the matched nodes
to merge ancestor nodes with child nodes along the
same hierarchical path. After calculating the matching
score, we can determine each subtree’s ranking score
cRank(w#treesys| Qc,t) and add them up (line 5-15).
The content ranking dRank(w#list| Qq,t) is calculated
by multiplying impression score of each content key-
word (line 16). Further, the matched web pages’ ranking
score is the product of context ranking and content
ranking (line 17). Finally, the matched pages with lower
ranking score are removed, where the parameter ¢ is
initially assigned to 0.2, and dynamically tuned based
on relevance feedback. For the rest of pages W', a quick
sorting algorithm is conducted to generate a ranking list
Wy, (line 18-22). The time complexity of Algorithm 1 is
O 259! 1]+ Wl 1 [V + Wl | Qal + W2
log(|W.'])), where h is the candidate tree or list set by
searching the index of context and content keywords.

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2672747, IEEE

Transactions on Knowledge and Data Engineering

Algorithm 1: Web Page Revisitation Algorithm

Input : a revisit query Q(W, Qc¢, Qq,t)

Output: W,

1 begin

2 Trees = getMatchContextTrees(W, Q., t);

3 Lists = getMatchTermLists(W, Qq, t);

4 determine candidate matched page set W, based on T'rees

and Lists;

5 foreach w € W, do

6 split w#tree into n smallest subtrees w#treegyp,
(1=1,---,n);

7 fori=1;: < n;i++ do

8 determine matched nodes V., of w#treesyy,;

9 foreach v € Vy, do

10 if v has a matched child node in Vi, then

1 | delete v from Vs, ;

12 else

13 L mAs(Qc, v, t) = % - cAs(w, v, t);

14 cRank(w#treeS,ubi\ Qc,t) = HVEVsubi mAs(Qe, v, t);

15 cRank(whtree| Qc,t)=y 1 | cRank(w#treeS“bi\ Qe t);

16 dRank(whlist| Qq,t) = quEQd dlIs(w, qa,t);

17 Rank(w| Q,t) = cRank(w#tree| Q.,t)-

18 dRank(wHlist| Qq,t);

19 determine the matched page w, with highest ranking score;

20 foreach w € W, do

21 if Rank(w| Q,t) < 6 X Rank(w-| Q,t) then

22 L determine W/ by deleting w from Wv;

23 W, = Quicksort(W/, Rank(W/| Q,t));

5 RELEVANCE FEEDBACK

Relevance feedback is an interactive approach that has
been shown to work particularly well in classical in-
formation retrieval and more recently in web search
domain [36]. When a user interacts with WebPagePrev
during web revisitation phase, s/he can either manually
enter some context keywords, or pick up suggested
values from contextual hierarchies by clicking the left-
side buttons of time, location, and activity bars as shown
in Fig. 7. Each contextual hierarchy is dynamically main-
tained by analyzing the user’s clicking behaviors and
the statistical frequencies of captured context instances.
Frequently accessed context items are top listed in the
corresponding contextual hierarchy. User’s typos in re-
finding requests are automatically corrected by the sys-
tem based on its indexed content and context keywords.

Fig. 6 shows top-4 previously visited web pages under
the re-finding context keywords {"busy”, “"programming”,
“at lab”, "in April”}, and content keywords {“retarget”,
“project”}. The user can scroll up and down with the
mouse wheel to view all the result pages. If the us-
er double-clicks and dwells on a page by printing,
downloading, or reading for a while, we treat the page
query relevant. With this feedback information, the web
revisitation engine gets to know the system performance,
and tune related influential parameters to improve it
gradually. Meanwhile, to keep pace with the user’s con-
text memorization strength, the engine tunes the leveled-
decay rates for probabilistic context memory according
to the located levels of typed context keywords.

& = @ %

Search settings Help

WebPagePrev

Context Keywords busy programming at lab in April

Content Keywords retarget project

(ay-r _ How to: Retarget a project using DTE
http://blogs.msdn.com/b/visualstudio/archive/2010/02/25/how-to-retarget...
<. If you have a Whidbey or Orcas project and try opening it in Visual Studio 2010, the conversion
wizard will do all the necessary steps to make sure your project is usable in the new Installment
Last access time: Thursday, April 17, 2014; Location: Room 9-216, Lab Building

(O wocaton] ") : ; ’

Handling of Project Retargeting and Project Upgrading Events
https://nuget.codeplex.com/workitem/2565

Determining the packages that need to be reinstalled due to project retargeting or project
upgrade and show and VS error message or add an error statement to Project Upgrade log

(C)— -T-&) Last access time: Friday, April 3, 2014; Location: Room 8-322, Lab Building

NuGet Support in Xamarin Studio 5.2 - Matt Ward
http://lastexitcode.com/blog/2014/08/10/NuGetSupportinXamarinstudios-2/

-Ta retarget all packages in the project you can select Packages in the Solution window, right click
and select Retarget. Selecting Retarget will remove the NuGet package and then add it again

Last access time: Friday. April 24, 2014; Location: Room 9-216, Lab Building

[“?‘ Double click the result to open the web page
Fig. 6. Web revisitation interface
o TimeTree o[- | Bl PlaceTree = | B) Bl ActivityTree o [
ERT3 =
=2014

- Winter

Dutside Canpus

« 2014/04 »

Sun Mon Tue Wed Tur Fri Sat il
30 311/ 2 3 4 5 TRAT
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 35 26 AR
27 28 29 30 1 3
4 s 6 7 8 9 10
©) Moming) Aftemoon () Evening

Qoo Eunancjems

(@) ®) ©

Fig. 7. Suggested values for context keywords input

5.1

The web revisitation performance metrics include pages’
finding rate, average precision, average recall and aver-
age rank error for a set of re-finding requests.
Definition 4: Assume a user’s web revisitation re-
quest @ returns a ranked list of n result pages, from
which the user aims to re-find ¢ target pages, and
confirms m relevant result pages {w1, -, wm}.
1) The finding of revisitation @Q is: Find(Q) = 1 if the
user confirms one or more relevant result pages (i.e., m >
0), and 0 otherwise.
2) The precision of revisitation Q) is: Precision(Q) = 2.
3) The recall of revisitation @ is: Recall(Q) = 7.
4) The rank error of revisitation Q is: RankError(Q) =
Z;”:l %/ m, where function Pos(Q,w;) returns
the position of the i-th confirmed page w; in the result
page list. O
Definition 5: Let Q be a set of user’s web revisitation
requests. The finding rate, average precision, average
recall and average rank error of Q are thus defined as
follows:
1) FindRate(Q) o] ;
Precision(Q) .

2) AvgPrecision(Q) = =92 o] ;
3) AvgRecall(Q) = %ﬁca”(@;
4) AvgRankError(Q) =

Performance Metrics

_ ZQgQ Find(Q) .

qeg RankError(Q)
1Ql

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2672747, IEEE

Transactions on Knowledge and Data Engineering

5.2 Influential Parameters to be Tuned

(1) Parameters used in constructing and managing probabilis-
tic context trees.

o A weight vector (aq,aq,as,ay) with 2?21 oa; = 1,
used in computing the association score of a context
activity ¢ with a web page access program w in Def. 2.
It quantifies the importance of ¢’s focus duration, focus
frequency, temporal distance from the page access, and
title similarity between ¢ and w, respectively. It impacts
the ranking position of result pages.

o Context focus duration threshold 1. and interleaving
window size threshold A between ¢ and w in context
acquisition. Reducing 7. and enlarging A can capture
more associated context activities into the probabilistic
context tree, and deliver more result pages.

e Leveled decay rates in probabilistic context trees
Alevel; (Where ¢ = 1,2,3,4 in this study), with which
the association score of a context activity ¢ with a web
page access w is dynamically computed to match user’s
memorization strength on context keywords in recall.

(2) Parameters used in constructing probabilistic content term
lists.

e A weight vector (f1,f2, 03, 81) with Z?:l Bi =1,
used in computing the impression score of a content term
d with a web page access program w in Def. 3. It quanti-
fies the importance of d’s focus duration, highlighted or
not, heading words or not, and tf-idf value, respectively.
Similar to (a1, oo, a3, o), it also impacts the ranking of
result pages.

o Content focus duration threshold T4 for content extrac-
tion. A lower setting of 7; enables more content terms to
be extracted from the browsed web page and add them
to the probabilistic term list.

(3) Parameter used to adjust the length of result list

e The parameter J is used to remove the pages with
lower ranking score from result list.
5.3 Tuning Strategies

The parameters tuning is carried out when any of the
following three conditions holds:

o Periodically (say, once every two weeks since last
tuning);

o When one of the performance metrics drops below
a threshold (e.g., Trindrate = 0.8, TPrecision = 0.2,
TRankError = 0.4) since last tuning;

o When user presses “>>" button at the right-bottom
of the screen if s/he is not satisfied with the result
and wants more pages.

The tuning consists of 3 steps.

Step 1: Optimize the settings of weight vector (aq, oz,
ag, aq) and (B1, Pe, B3, B4) to ensure user’s confirmed rel-
evant result pages are ranked higher than unconfirmed
ones, thus decreasing the average rank error. Because
the computation of context ranking is independent from
that of content ranking. The weight vector «; and j;
(for ¢ = 1,2,3,4) can be respectively optimized in a 4-
dimensional weight space to improve context ranking

and content ranking for the confirmed relevant result
pages. In order to precisely specify the weight coeffi-
cients in our linear aggregation function, we propose a
weak partial ordering graph model to generate user’s
preferred ranked list as shown in Fig. 8.

S1 S2 S3 S4

wirl 08 07 05 02

Weak partial ordering graph:

w2 04 06 02 07
w3 05 04 07 03

wg| 02 03 08 04

ws| 05 03 01 0.1

Fig. 8. A weak partial ordering graph example

Definition 6: Given a set of web pages W = {w, wo,

- ,wy} and corresponding normalized feature values
S = {s1,82, -, Sm}, a weak partial ordering graph is a
directly graph G(V, E), where E is a set of edges defining
the relative ordering between pages, and V' is a set of
vertices depicting the Pagel D. There exists an edge from
w; to w; when one of the following two conditions holds:
1) Vs € S,w;.s > wj.s;

2) Vs € S — {sk},w;.s > wj.s, where s, € S and w;.s, <
Wj.Sk; O

Example 5.1: Fig. 8 illustrates five web pages with four
normalized feature values. For pages w; and ws, the
edge ey3 satisfying condition 2 is labeled by s3, where
wy.s3 < ws.s3. For pages wo and ws, the edge ess
satisfying condition 1 is labeled by N.

Taking context ranking as an example illustrated in
Fig. 8, we detail the adjustment of weight vector (a1, as,
a3, o) into two cases: 1) When user confirms one result
page as relevant, the adjustment is based on the label
of edges incident to the confirmed page’s node. For
example, when user confirms ws as a relevant page,
we can clearly determine enlarging a; can change the
relative order between w, and ws by the label s; of e4s;
2) When user confirms two or more pages as relevant,
the confirmed pages’ nodes are firstly clustered as a set.
By neglecting the inner edges between graph nodes of
confirmed pages, the adjustment is based on the label
of edges incident to the cluster set. For example, when
user confirms ws and w, as relevant pages, the inner
edge esq4 is neglected for the clustered pages {ws,w4}.
And the labels of incident edges are ranked based on
their frequencies. Through enlarging s3 and s4, the
RankError(Q) can be reduced.

During the adjustment of weight vector, the linear
constraint Z?:l a; = 1 should be satisfied. The objective
of weight adjustment is to minimize RankError(Q). For
case 1, after increasing «; by Aq;, other weights should
be decreased to satisfy the constraint Z?Il a; = 1. We
adopt Aoy = Eii‘;;";;’i;’;sl - Aoy (for k = 2,3,4) to
allocate Ay to (ag, a3, o). The larger wy.s; — ws.sy
is, the more corresponding weight decreases. Through
traversing the label of other edges {eis,ess5,€e25} con-

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2672747, IEEE

Transactions on Knowledge and Data Engineering

cerning ws, the upper bound of ws’s ranking position
is 4. For case 2, we firstly enlarge a3 and oy sequen-
tially to reduce RankError(Q). When increasing o3 by
Aas, (a1, a9) should be decreased and a4 remains the
same. The decreased amount for («aj,«s) is calculat-
ed by Aoy = offstesilusauial A, (for
k = 1,2). When context ranking satisfies condition
cRank(wattree| Q.,t) > cRank(wsttree| Q.,t), we begin
to increase ay. For the adjusted weight values that min-
imize RankError(Q), we add them into the candidate
set ¢o. Based on the following user typed queries and
confirmed operations, a suitable weight vector value
can be learned from ¢,. Considering a set of re-finding
requests Q, the adjustment of weight vector is conducted
on each graph to minimize AvgRankError(Q).

The weight adjustment for (51, (2, 83, 84) can be also
conducted in a similar manner.

Step 2: Decrease the context and content focus duration
thresholds 7. and 7; by half, and doubly increase the
interleaving window size threshold A in context acqui-
sition, if the finding rate is low and less than 7rindRrate. In
this way, more pages could be returned in the result list.
The other way around, to improve the average precision,
context and content focus duration threshold 7. and 74
are to be increased, and the interleaving window size A
is to be shortened, aiming to drop out more irrelevant
web pages from the results. To this end, we examine all
user’s confirmed relevant pages since last tuning, and
take the smallest 7. and 74, as well as the largest A,
of their associated context activities and content terms
as the new values of 7., 74, and A. Here, the parame-
ters tuning for the improvement of FindRate(Q) and
AvgPrecision(Q) is in two different directions. If the
former is less than the later, our tuning is FindRate-
oriented, and otherwise AvgPrecision-oriented.

Step 3: Adjust leveled decay rates of context trees
Alevel; (for i = 1,2,3,4) according to the hierarchi-
cal levels of context keywords that user exploited in
his/her revisit queries, since the later reflects the con-
text memorization status. To match the user’s context
memory degradation, we count the number of typed
context keywords at each level as ;, and approximate
the user’s context memorization amount at level; by
E+€Z—417+5+51 It is assumed that if a user re-
members a cjc;rllt(]ext value at a lower level (e.g., “Lab
Building”), there is no doubt that s/he also remembers
its upper-leveled value (e.g., “Tsinghua University”). Let
cm; = eMeveti V=t The context memory’s decay rate
at level; is adjusted to)\lweli:%, where t; is the
initial time that the context tree 1s constructed, and ¢ is
the current tuning time.

Step 4: Decrease 6 when confirmed pages with lower
ranking score are still removed from result list after Step
1. Meanwhile, increase § gradually to improve system’s
AvgPrecision(Q) when FindRate(Q) keeps stable.

Everytime when the tuning strategy is conducted, the
influential parameters are adjusted to gradually approx-

cm; —

10

imate the inherent browsing behaviors and recall habits.
Repeating such parameter adjustment, the strategy can
guarantee that there is a better solution to improve the
average re-finding performance after a period of time.

The time complexity of relevance feedback mechanism
is O(N,-X-logn+N,- 3% | |Si]), where N, is the number
of revisit queries, X is the number of candidate paths, n is
the number of graph nodes for G(V, E), L is the number
of hierarchical levels, and S; is the context node set at
the ith level.

6 EVALUATION

In this section, we firstly examine the effectiveness of
the proposed web revisitation technique through a 6-
month user study with 21 participants, then evaluate the
scalability of our approach on a large synthetic dataset.
The experiment on synthetic data is running on a PC
with 3.10 GHz Intel i5-3450 CPU, and 10 GB memory.

6.1 User Study
6.1.1 Experimental Setup

We conducted a 6-month user study from Feb. 16, 2014 to
Aug. 16, 2014 to investigate the re-finding performance
of four different methods, i.e., WebPagePrev, Memento,
History List Searching, and Search Engine. 14 students, 2
teachers, 3 office staffs, and 2 engineers (totally 21 users,
13 male and 8 female, aged between 18 and 35) from
Tsinghua University, Beijing were invited to participate
in the user study. We firstly installed WebPagePrev and
Memento on each user’s laptop. A javascript-based cross-
platform plug-in was deployed on each user’s Chrome
web browser to obtain his/her page visit behavior, and
a context monitor developed by C++ was deployed in
the background to capture running computer programs
by calling the windows API functions.

We then provided the following instructions to the
users before starting the experiment: 1) Each user is
suggested to execute at least one re-finding task per day.
2) For each re-finding task, four different methods are to
be invoked. The execution sequence is random. 3) When
using WebPagePrev to do re-finding, context keywords
(from time, location, and activity context hierarchies) and
content keywords (from page’s title and focused body
text) could be input. With Memento, content keywords
(i.e., topic-phrases extracted from the page) and context
keywords (i.e., topic-phrases extracted from the preced-
ing and following pages) could be input. The users
could leave either context or content keywords empty if
they do not want to. With History List Searching, content
keywords from page’s title could be input. With Search
Engine, content keywords from page’s title, body text,
and other descriptive information could be input. 4) The
users should connect the external GPS module with the
laptops when they are outside the campus. 5) At the end
of a re-finding task, the users should record their search
keywords, the number of target pages they looked for,
the ranking position(s) of returned target page(s), and
the length of result page list.

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2672747, IEEE

Transactions on Knowledge and Data Engineering

During our 6-month user study, the total number of
focused pages is 111042, and about 5288 per user. Each
user raises about 618 revisit queries. On average, with
WebPagePrev, the users use 4.37 context keywords and
2.26 content keywords to execute a revisit query. With
Memento, 1.82 context keywords and 2.07 content key-
words are used. Besides, 1.41 content keywords and 3.84
content keywords are used with History List Searching
and Search Engine, respectively.

2000

22 non-heading XN sitte | [F=3 tevel; TTD tevel, EEEER fevel

1

1800

1600
» 1400

3 1200

eri

1000

of revisit qu
R

800

04 HAH
600 £
400 2
02 N H
200
0

(0-10] (10-20] (20-30] (30-40] (40-50] (50-60] >60 0.0
Re-finding days

7N
7R
;WWW—”\HHHM

(40-50] (50-60]

H I N
-10] (10-20] (20-30] (304
Re-finding days

3

(a) # of different query types (b) Ratio of query keywords

Fig. 9. Statistics of revisit queries in different re-finding time
intervals for WebPagePrev

From Fig. 9(a), we can see the number of three query
types in different re-finding time intervals, where re-
finding days dayr is the elapsed days since the page was
accessed. The results show users are more dependent
on episodic memory cues when searching for the target
page with a longer dayg. For example, the number of
queries using context keywords is more than that of
queries using content keywords when dayr>20, espe-
cially 4.53 times when dayr>60. Fig. 9(b) shows the ratio
of query keywords belonging to different context hier-
archical levels and page segments in different re-finding
time intervals. Owning to the decay of episodic memory,
as time elapses, more general context keywords from
level 2, 3 are typed by the users, and the ratio is over
52.74% when dayr>40. Besides using title terms, they
also tend to recall more content keywords from the non-
heading page segments, over 46.22% when daygr>40.

6.1.2 Experimental Results

(1) Performance Comparison with Existing Approach-
es. We compare the performance of our personal web
revisitation approach with three conventional methods.
From Fig. 12, WebPagePrev delivers the best average F1-
measure, about 2.15 times, 1.51 times and 1.29 times
than that of Search Engine method, History List Searching
method and Memento. For the precision metric of Search
Engine method, parameter n corresponds to the number
of browsed pages in user’s visual field before getting
the desired targets. The finding rate of WebPagePrev is
92.10% compared to Search Engine method 81.11%, His-
tory List Searching method 84.40% and Memento 89.31%.
Further, the average rank error of WebPagePrev is 0.3145,
compared to Search engine method 0.6105, History List
Searching method 0.4717 and Memento 0.4322. The reason
includes several aspects. History List Searching method
mainly utilizes the terms from page title, leaving out

11

other useful content cues. While the query results and
their rankings are frequently updated within the search
engine, participants sometimes felt difficult to re-locate
the target pages. Memento does not make full use of
activity context and collects more redundant content
terms, which causes irrelevant query results returned.
We further perform t-test and all the p-values are < 0.01,
which indicate that the improvement of WebPagePrev
over the comparison methods are statistically significant.

BX Finding rate B Average rank error |

= Average precision EEEF Average recall [[TT Average F1-measure

(a) Finding Rate and Average (b) Average Precision, Recall and
Rank Error Fl-measure

Fig. 12. Performance comparison with existing approaches

(2) Effectiveness of Memories Decay and Relevance
Feedback. Through removing decay and relevance feed-
back mechanism from WebPagePrev, we evaluate the ef-
fectiveness by comparing four different cases: 1) Without
decay (WD); 2) Without relevance feedback (WF); 3)
Without decay and relevance feedback (WDF); 4) With
decay and relevance feedback (DF). From Fig. 10, DF’s
finding rate increases by 0.88%, average Fl-measure
increases by 15.27%, and average rank error decreases
by 4.71% than WD. In comparison with stable memory
management strategy, DF’s finding rate increases by
9.82%, average Fl-measure increases by 47.09%, and
average rank error decreases by 19.44% than WDF. Con-
sidering relevance feedback, DF’s finding rate increas-
es by 7.16%, average Fl-measure increases by 39.22%,
and average rank error decreases by 16.14% than WF.
Here, AvgRecall(Q) and FindRate(Q) are quite close.
This is because when there is only one wanted tar-
get, AvgRecall(Q)=FindRate(Q). In the study, around
83.37% of re-finding queries look for one target page.
(3) Effectiveness of Weight Adjustment in Relevance
Feedback. We evaluate the effectiveness of Weak Partial
Ordering Graph (WPOG) by comparing the performance
with Possible Orderings Tree (POT) as a baseline [37]. From
Fig. 11, WPOG'’s finding rate increases by 3.19%, average
Fl-measure increases by 11.38%, and average rank error
decreases by 8.23% than POT. The main reason is that
POT makes an assumption for the weight coefficients,
which should satisfy a uniform distribution. However,
this assumption does not always hold for different users.
During the adjustment of weight vectors, there are a set
of candidate solutions to minimize AvgRankError(Q).
WPOG can determine better weight coefficients consid-
ering user’s preference instead of the mean value.

(4) Contribution Analysis of Context and Content Fac-
tors. To examine the importance of different factors in
WebPagePrev, we divide revisit queries into three types,

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2672747, IEEE

Transactions on Knowledge and Data Engineering

12

== WD
04 -A-wF
Q- WDF

—Xem WD

202f -A-wr
z @ WDF
-y —8-r

Avg. Recall

-~A-wrF
@ WDF
—a—pr

>
L

s 6 1 i 1 2

3 4 3 4
Time (Month) ‘Time (Month)

(a) Finding Rate (b) Average Rank Error

1 05

3 4
Time (Month)

(c) Average Precision

. 10. Evaluating the effectiveness of memories decay and relevance feedback

i 1 2 i 1 2 3 5 6

3) 4
Time (Month) Time (Month)

(d) Average Recall (e) Average Fl-measure

Rank Error

—a- w706 G2
-e-ror z

—8— P0G
-&-POT

Ave. Finding Rate

1 05

G02f —ewroc
2 -o-ror

2 s 6 1 2

3 4 3 4
Time (Month) Time (Month)

(a) Finding Rate (b) Average Rank Error

3 4
Time (Month)

(c) Average Precision

6 1 2 6 1 2

3 4 3 4
Time (Month) Time (Month)

(d) Average Recall (e) Average Fl-measure

Fig. 11. Evaluating the effectiveness of weight adjustment method in relevance feedback

i.e., 1) querying based on content keywords only, 2)
context keywords only, 3) context and content keywords.
In the study, around 16.09% of queries belong to query
type 1, 24.77% belong to query type 2, and 59.14% belong
to query type 3. Table 1 shows that queries using con-
text and content keywords perform the best in finding
rate (93.88%), average rank error (0.2849) and average
Fl-measure (0.4733). Queries using context keywords
perform better than queries using content keywords by
increasing 3.04% in finding rate, decreasing 19.27% in
average rank error, and increasing 29.57% in average
Fl-measure. The main reason for these performance
differences could lie in the number of query keywords
used. Content based queries use around 2.71 keywords
on average, context based queries use around 4.83 key-
words, and context+content based queries use around
6.34 keywords (4.18 context keywords and 2.16 content
keywords). We observe that the users tend to enter more
than one activity element in the contextual hierarchy like
"busy” followed by “programming”.
TABLE 1

Performance comparison between context and content factors in WebPagePrev

Query Finding Average Average | Average Average
Keywords | Rate Rank Error | Precision Recall Fl-measure
Content 0.8745 0.4033 0.1903 0.8577 0.3115
Context 0.9011 0.3256 0.2619 0.8830 0.4036
Contextt 1 g3gg 0.2849 03185 | 09212 04733
Content

time or location cue. As the activity context is inferred
from user’s computer programs, it binds with page
access more closely, leading to the best performance.

TABLE 2

Performance comparison of different context factors in WebPagePrev

Context Finding Average Average Average Average
Factor Rate Rank Error Precision Recall Fl-measure
Time 0.8873 0.3474 0.2574 0.8681 0.3971
Location 0.8716 0.3907 0.2433 0.8533 0.3786
Activity 0.9192 0.3221 0.2950 0.8922 0.4434
Time+Loc. 0.9066 0.3423 0.2805 0.8784 0.4252
Time+Act. | 0.9491 0.2630 0.3149 0.9344 0.4711
Loc.+Act. 0.9379 0.2857 0.3013 0.9207 0.4540
fimerloc | 0.9443 0.2489 03414 | 0.9309 0.4996

(5) User Satisfaction Analysis. After a 6-month user
study, the participants completed a questionnaire to
express their attitudes towards WebPagePrev as shown
in Table 3. These questions were answered through the
Likert-type scale approach, where 1 represents strongly
disagree and 5 represents strongly agree. From Table 3,
we can see that participants were basically satisfied with
WebPagePrev’s re-finding results, where the average rat-
ing score is 4.42. Meanwhile, some participants suggest-
ed the user interaction module needs to be improved.

TABLE 3

Questionnaire Result

Furthermore, we investigate the behaviors of time, lo-
cation, and activity contextual elements in WebPagePrev.
For query type 2 and 3, about 9.68% of queries use
time, 6.32% use location, 16.94% use activity keyword(s),
8.27% use time plus location, 25.74% use time plus
activity, 14.72% use location plus activity, and 18.33% use
all the three. From Table 2, we find that activity context is
the best recall cue, followed by time and location context.
The reason is due to the smallest search space of activity
context compared to that of time and location context.
More candidate accessed pages are associated with a

Question Rating
I can re-find previously viewed web pages easily with | 4.13
WebPagePrev.

I am satisfied with WebPagePrev’s re-finding results. 4.42
The web revisitation interface is friendly. 3.68
Contextual information (time, place, and activity) consti- | 4.35
tutes useful cues for web revisitation.

The provided context hierarchical trees are helpful when | 3.87
I could only remember the past access context vaguely.
WebPagePrev can replace the commonly used browser | 4.17
tools (e.g., history list, search engine) for web revisitation.

I prefer to continue to update the software, and use it for | 4.21
a long time.

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2672747, IEEE

Transactions on Knowledge and Data Engineering

600 700 500

s 600 -7 = 100K —%k- 7, = 100K
= 2 bl 2 400 Z) " 500 €
- B -@-17 =500K g -©- 7, =3
S S _5_0 K 1M 3 - r/’ =M
Zanf 2 7= H y
£ £ 400 ’ E 0 '
3 3 g
2 300 3 /,,i ¢
2 5 - g
g £.300 r 1 22001
= b g o - T - S— P y
g 50200 - 5o P)
< z - R — N

< -e_—" < 100Q-=""
wF e g ek e
wf _m g Y
__________ 0 © e ETTT et e b SEEERE &
Ty S - L Sl 0

150 200

Number of

30 35 40
Number of context nodes

(a) mt =300, nk=10

(b) 1mn=40, nx=10

9 10
Number of query keywords

(c) mt=300, n,=40

250 300

content terms

Fig. 13. Average revisitation response time on synthetic data

6.2 Experiment on Synthetic Data

Assume a user has accessed and focused total_page_num
(np = 100K,200K, --- ,1M) web pages. Associated with
each web page, there is a probabilistic context tree
and a probabilistic content term list, over which us-
er’s re-finding requests are executed. Each context tree
has 4 hierarchical levels with context_node_num (n,
20,25,---,50) tree nodes in total. The node number at
level 1, 2 and 3 occupies 70%, 20%, and 10% of the
total node number. Except for root node representing
context ALL, nodes at the same level have the same
fan-out value. For time context, we generate a set of
time stamps during 12 months. For location context, we
select a set of regions and extract a set of POIs (point
of interests) from a city map (Beijing). The POls are
randomly assigned to each context tree, where the leaf
nodes’ overlap ratio is 35%. For activity context, we
create a dataset by capturing 30115 computer programs
from working environment of 7 participants. The asso-
ciation score of each child node at the lowest level is
a random value from 0 to 1. Each probabilistic content
term list accommodates maximally content_term_num
(n: = 100, 150, - - - ,400) unique stemmed terms extracted
from pages crawled from common internet web sites
(e.g., shopping site, blog site, Quora, etc). The impression
score of each term is randomly assigned in the range
of (0,1). Assume a user raises % revisit queries, each
query contains query_keyword_num (ny = 6,7,---,12)
keywords, where about half of them are context key-
words, and the other half are content keywords. Both
are randomly taken from the context tree and content
term list bounded with a certain web page.

From the result presented in Fig. 13(a),(b), we can
find that the average response time increases accordingly
with the increase of 7, and 7,. The reason is obvious, as
more context nodes and content terms linked with every
page access need to be examined and matched with
the user’s query keywords. More pages being accessed,
more context trees and term lists need to be checked,
thus more time to process the revisit queries. On the
other hand, the response time does not increases sharply
with 7y, as illustrated in Fig. 13(c). For example, when
the user’s query contains 6 keywords, the response time
is 28 ms (when 7, = 100K), 102 ms (when 7, = 500K),
and 198 ms (when 7, = 1M). Further, it increases to
45 ms, 173 ms and 307 ms, respectively, when 7, = 10.
Then the response time cost decreases a little when 7y,

continues goes up. This might be because more query
keywords quickly filter mismatched context trees, thus
reducing the search space of candidate term lists.

7 DISCUSSION

When a user does re-finding, s/he usually has certain
purposes in mind, like preparing a project proposal,
writing codes, etc. WebPagePrev strives to support users
to re-find what they accessed through previous access
time, location, concurrent activities, and content key-
words. Beyond that, more user-centric context factors
(e.g., access purpose, expertise, background, interest,
etc.), as well as social context factors (e.g., external
events, surrounding people, etc.), could be inferred from
user’s profile, agenda, and external service providers,
and bounded with the accessed pages. In this way, not
only the user him/herself could benefit from such rich
contextual cues during re-finding process, but also other
users with similar access purpose and background could
share the more directed page access. This is in line with
the spirit of social search [38], [39], [40], which advocates
two paradigms (namely, library paradigm and village
paradigm) in information retrieval. According to [39],
in a library, people use keywords to search documents,
and the trust is based on authority, while in a village,
people use natural language to ask questions, answers
are generated in real-time by anyone with the expertise
in the community, and trust is based on intimacy.

In social search, a lot of data about the people is used,
bringing in privacy protection issues. Life-cycle manage-
ment of people’s information with degradation policies
from high to low precision, as done with the context
memory mechanism in this study, could be exploited.
We leave this issue to our further study.

8 CONCLUSION

Drawing on the characteristics of human brain memory
in organizing and exploiting episodic events and seman-
tic words in information recall, this paper presents a per-
sonal web revisitation technique based on context and
content keywords. Context instances and page content
are respectively organized as probabilistic context trees
and probabilistic term lists, which dynamically evolve by
degradation and reinforcement with relevance feedback.
Our experimental results demonstrate the effectiveness
and applicability of the proposed technique. Our future
work includes 1) prediction of users’ revisitation, 2)

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2672747, IEEE

Transactions on Knowledge and Data Engineering

extending the technique to support users’ ambiguous
re-finding requests, and 3) incorporating social context
factors in information re-finding.

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

(9]

(10]

(1]
(12]
(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

A. Cockburn, S. Greenberg, S. Jones, B. Mckenzie, and M. Moyle.
Improving web page revisitation: analysis, design and evaluation.
IT & Society, 1(3):159-183, 2003.

L. Tauscher and S. Greenberg. How people revisit web pages:
empirical findings and implications for the design of history
systems. International Journal of Human Computer Studies, 47(1):97—
137, 1997.

]J. Teevan, E. Adar, R. Jones, and M. Potts. Information re-retrieval:
repeat queries in yahoo’s logs. In SIGIR, pages 151-158, 2007.
M. Mayer. Web history tools and revisitation support: a survey
of existing approaches and directions. Foundations and Trends in
HCI, 2(3):173-278, 2009.

L. C. Wiggs,]J. Weisberg, and A. Martin. Neural correlates of
semantic and episodic memory retrieval. Neuropsychologia, pages
103-118, 1999.

M. Lamming and M. Flynn. “forget-me-not”: intimate computing
in support of human memory. In FRIEND21 Intl. Symposium on
Next Generation Human Interface, 1994.

E. Tulving. What is episodic memory?
Psychological Science, 2(3):67-70, 1993.

C. E. Kulkarni, S. Raju, and R. Udupa. Memento: unifying content
and context to aid webpage re-visitation. In UIST, pages 435436,
2010.

J. Hailpern, N. Jitkoff, A. Warr, K. Karahalios, R. Sesek, and
N. Shkrob. Youpivot: improving recall with contextual search.
In CHI, pages 1521-1530, 2011.

T. Deng, L. Zhao, H. Wang, Q. Liu, and L. Feng. Refinder:
a context-based information re-finding system. IEEE TKDE,
25(9):2119-2132, 2013.

T. Deng, L. Zhao, and L. Feng. Enhancing web revisitation by
contextual keywords. In ICWE, pages 323-337, 2013.

H. Takano and T. Winograd. Dynamic bookmarks for the WWW.
In HYPERTEXT, pages 297-298, 1998.

S. Kaasten and S. Greenberg. Integrating back, history and
bookmarks in web browsers. In HCI, pages 379-380, 2001.

J. A. Gamez, . L. Mateo, and J. M. Puerta. Improving revisitation
browsers capability by using a dynamic bookmarks personal
toolbar. In WISE, pages 643652, 2007.

R. Kawase, G. Papadakis, E. Herder, and W. Nejdl. Beyond the
usual suspects: context-aware revisitation support. In HT, pages
27-36, 2011.

D. Morris, M. R. Morris, and G. Venolia. Searchbar: a search-
centric web history for task resumption and information re-
finding. In CHI, pages 1207-1216, 2008.

B. MacKay, M. Kellar, and C. Watters. An evaluation of landmarks
for re-finding information on the web. In CHI, pages 1609-1612,
2005.

L. Tauscher and S. Greenberg. Revisitation patterns in world wide
web navigation. In CHI, pages 399406, 1997.

S. S. Won, J. Jin, and J. I. Hong. Contextual web history: using
visual and contextual cues to improve web browser history. In
CHI, pages 1457-1466, 2009.

T. V. Do and R. A. Ruddle. The design of a visual history tool to
help users refind information within a website. In ECIR, pages
459-462, 2012.

F. Rizzo, F. Daniel, M. Matera, S. Albertario, and A. Nibioli.
Evaluating the semantic memory of web interactions in the xmem
project. In AVI, pages 185-192, 2006.

P. Qvarfordt, S. Tretter, G. Golovchinsky, and T. Dunnigan. Search-
panel: framing complex search needs. In SIGIR, pages 495-504,
2014.

S. Tyler and J. Teevan. Large scale query log analysis of re-finding.
In WSDM, pages 191-200, 2010.

J. Teevan. The re:search engine: simultaneous support for finding
and re-finding. In UIST, pages 23-32, 2007.

E. Adar, J. Teevan, and S. T. Dumais. Large scale analysis of web
revisitation patterns. In CHI, pages 1197-1206, 2008.

D. R. Karger, K. Bakshi, D. Huynh, D. Quan, and V. Sinha.
Haystack: A customizable general-purpose information manage-
ment tool for end users of semistructured data. In CIDR, pages
13-26, 2003.

Current Directions in

[27]

[28]

[29]
[30]
[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

14

J. Gemmell, G. Bell, and R. Lueder. Mylifebits: a personal database
for everything. Communications of the ACM, 49(1):88-95, 2006.

S. Dumais, E. Cutrell, J. Cadiz, G. Jancke, R. Sarin, and D. C.
Robbins. Stuff i've seen: a system for personal information
retrieval and re-use. In SIGIR, 2003.

R. Sorabji. Aristotle on memory. University of Chicago Press, 2rd
edition, 2006.

H. C. Ellis and R. R. Hunt. Fundamentals of human memory and
cognition. William C. Brown, 3rd edition, 1983.

R. Durrett. Probability: theory and examples. Cambridge University
Press, 4rd edition, 2010.

L. Guo, F. Shao, C. Botev, and]J. Shanmugasundaram. XRANK:
ranked keyword search over xml documents. In SIGMOD, pages
16-27, 2003.

J. Li, C. Liu, R. Zhou, and W. Wang. Top-k keyword search over
probabilistic xml data. In ICDE, pages 673-684, 2011.

H. Georgiadis and V. Vassalos. Improving the efficiency of xpath
execution on relational systems. In EDBT, pages 570-587, 2006.
D. C. Rubin and A. E. Wenzel. One hundred years of forgetting:
a quantitative description of retention. Psychological Review,
103(4):734-760, 1996.

L. Ruthven and M. Lalmas. A survey on the use of relevance
feedback for information access systems. Knowledge Engineering
Review, 18(2):95-145, 2003.

M. A. Soliman, L. E. Ilyas, D. Martinenghi, and M. Tagliasacchi.
Ranking with uncertain scoring functions: semantics and sensi-
tivity measures. In SIGMOD, pages 805-816, 2011.

M. V. Vieira, B. M. Fonseca, R. Damazio, P. B. Golgher,
D. d. C. Reis, and B. Ribeiro-Neto. Efficient search ranking in
social networks. In CIKM, pages 563-572, 2007.

D. Horowitz and S. D. Kamvar. The anatomy of a large-scale
social search engine. In WWW, pages 431440, 2010.

D. Carmel, N. Zwerdling, I. Guy, S. Ofek-Koifman, N. Har’el,
L. Ronen, E. Uziel, S. Yogev, and S. Chernov. Personalized social
search based on the user’s social network. In CIKM, pages 1227-
1236, 2009.

Li Jin is a Ph.D. candidate in the Department
of Computer Science and Technology, Tsinghua
University, Beijing, China. His current research
interests include context-aware data manage-
ment and context-based information re-finding.

Gangli Liu is a Ph.D. candidate in the De-
partment of Computer Science and Technology,
Tsinghua University, Beijing, China. His current
research interests include context-aware data
management and context-based information re-
finding.

B =~

Chaokun Wang is a professor in the School of
Software at Tsinghua University in China. His re-

@ search interests include social network analysis,

i graph data management, and music computing.
Ling Feng is a professor of computer sci-
ence and technology at Tsinghua University in
China. Her research interests include context-
aware data management toward ambient intel-
ligence, knowledge-based information systems,
data mining and warehousing, and distributed
object-oriented database management system-
s. She has published more than 150 scientific
articles in high-quality international conferences
or journals, and received the 2004 Innovational
VIDI Award by the Netherlands Organization

for Scientific Research, the 2006 Chinese ChangdJiang Professorship

Award by the Ministry of Education, and the 2006 Tsinghua Hundred-

Talents Award.

